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Abstract This paper considers how to most efficiently re-
duce the run time of Markov Chain Monte Carlo simulations
by using speculative computation over multiple processors.
Current algorithms are reviewed, and a proof for an the opti-
mal use of parallel processors is presented. Results for opti-
mal jump size in Roberts and Rosenthal (2001) are extended
to the case of parallel MCMC using speculative computation
to develop an algorithm which gives the maximum possible
speedup for an arbitrary target distribution.

A speedup of 3.13 is achieved on a four core shared
memory system, and a speedup of 25.3 times is achieved on
64 core cluster. The algorithm is simple to implement and
can provide speedups to any MCMC process with a likeli-
hood evaluation time longer than ≈ 100µs. An application
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to estimating mutation rate is considered, where a speedup
of 2.70 is achieved using four cores.
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1 Introduction

Markov chain Monte Carlo (MCMC) is an important tool for
fitting complex stochastic models to data, and remains the
generic method of last resort for statistical inference from
complex models. Application of the Metropolis-Hastings al-
gorithm (Metropolis et al., 1953; Hastings, 1970) with some
conditions on the proposal distribution will guarantee con-
vergence of the simulated chain Θ0,Θ1,Θ2, . . . to the sta-
tionary distribution π(θ).

The method is however computationally intensive, and
in cases where likelihood evaluations take a significant frac-
tion of a second and many (potentially millions) of itera-
tions are required to provide a representative sample this can
cause severe problems. One approach to reducing computa-
tion time for long MCMC runs is the use of parallel proces-
sors.

The Metropolis-Hastings algorithm is sometimes con-
sidered to be ‘embarrassingly parallel’ as multiple chains
can be run on different processors simultaneously, with no
need for communication between threads (Rosenthal, 1999).
However it is often the case that it is desirable to achieve
large depth on a serial chain, as there is a long burn-in period
before the chain converges to the target distribution. MCMC
in this sense appears to be inherently serial, and new algo-
rithms must be developed to achieve a speedup by using par-
allel computation.

Speculative computation was first applied to MCMC in
the context of simulated annealing by Witte et al. (1991).
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Here the concept of computing log-likelihoods in parallel
before they are needed is introduced. The process at each
step is visualised as a binary tree, where each available pro-
cessor can be assigned to calculate the next log-likelihood
assuming the previous state was either rejected or accepted.
Any unused calculations due to the speculation being incor-
rect are ‘thrown away’.

As the temperature is increased, the acceptance proba-
bility increases, and so the shape of the tree used for the
speculative computation is dynamically altered to achieve
the maximum expected depth at each step. This leads to un-
balanced trees where all processors assume the previous up-
date will be rejected at low temperatures, through balanced
trees where there is an equal likelihood for the proposal to be
rejected, to again unbalanced trees in the opposite direction
at high temperatures.

The application of speculative computation to sampling
distributions using MCMC has been considered by Byrd et
al. (2008) and Brockwell (2006). These authors do not con-
sider different tree shapes, and only consider the cases where
all processors assume rejection and that of a balanced tree
respectively. This will not in general give the optimal speedup.

The basic algorithm on K processors considered by Byrd
et al. (2008) is as follows:

If Θt = θ is the previously simulated state, the values of
Θt+1, . . . ,Θt+k with k ∈ {1,2, . . . ,K} random are determined
as follows: The computation of all α1 · · ·αK is done in par-

Algorithm 1 Parallel MCMC using an unbalanced tree
shape

for i from 1 to K do
simulate iid θ ′i ∼ q(θ , ·);

end for
for i from 1 to K do . in parallel

calculate probabilities αi←min
{

1,
π(θ ′i |y)q(θi|θ ′i )
π(θi|y)q(θ ′i |θi)

}
;

with probability αi set Ai = 1, otherwise set Ai = 0;
end for
for i from 1 to K do

if Ai = 0 then
Θt+i ← θt ;

else
Θt+i ← θ ′i ;
exit for;

end if
end for

allel on the K processors. The first step of simulating from
the proposal distribution may also be done in parallel.

When working with a problem where the acceptance prob-
ability is roughly fixed, or difficult to tune (for example mak-
ing rearrangements of a tree structure), this algorithm will
certainly not always be optimal. Consider for example a case
where 90% of updates are accepted, then the expected depth
on such a tree will only be 1, whereas a balanced tree will

always achieve log2(K + 1) updates per iteration. This has
been addressed in the context of simulated annealing by Witte
et al. (1991), but has not been previously considered in the
context of sampling.

However, it is often the case that the acceptance proba-
bility can be changed. In this case a feature of algorithm 1
not previously considered is that it may become more effi-
cient if the acceptance probability is lowered. This can be
achieved if it is possible to propose more widely distributed
candidate steps θ ′ (choosing q(θ ,θ ′) to have more heavily
weighted tails at large values of |θ ′−θ |).

Changing the acceptance probability also affects the mix-
ing efficiency of the chain. For an infinite dimensional Gaus-
sian target distribution Roberts, Gelman, et al. (1997) show
that the fastest convergence is achieved by choosing an ac-
ceptance probability of 0.234. An analytic function for ef-
ficiency is also given, showing that anything between 0.15
and 0.4 will still give 80% of the maximum possible effi-
ciency in this case. This effect must also be considered when
choosing the acceptance probability if the aim is to minimise
convergence time.

This paper extends the idea of using different tree shapes
introduced by Witte et al. (1991) to the problem of sam-
pling using MCMC by maximising the expected tree depth
and mixing efficiency of the serial Metropolis-Hastings al-
gorithm (Roberts and Rosenthal, 2001) together to give the
maximum speedup.

With the ready availability of multi-core processors with
fast inter-processor communication at relatively high band-
width, this algorithm allows a speedup of up to around 3
times essentially for free on a standard 4-core laptop. Even
larger speedups can be achieved with supercomputing re-
sources. This has useful applications in bioinformatics, where
log-likelihood evaluations take a significant fraction of a sec-
ond and burn-in time is relatively long. Such an example is
considered in Sect. 6.

The remainder of this article is arranged as follows. In
Sect. 2 an extension to the basic algorithm (1) where the
path through the algorithm is represented as a binary tree
is introduced, and this tree is shaped to give the maximum
expected depth (and hence movement through the chain) at
each iteration given an acceptance probability. Sect. 3 ex-
hibits a simple model for the processing times involved the
the algorithm, allowing analysis of when the algorithm will
be effective. In Sect. 4, the concept of effective sample size
is introduced, and how the efficiency of the chain depends
on acceptance probability in an idealised situation is anal-
ysed. This result is then extended to the case of the parallel
algorithm by considering what the optimal acceptance prob-
ability is for K processors, bringing together the results of
Roberts and Rosenthal (2001) and the optimal tree shape of
Sect. 2. An implementation of the algorithm and the real-
time speedups measured are presented in Sect. 5. An appli-
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← accept reject→

Fig. 1 Balanced accept-reject tree as considered by Brockwell (2006),
giving speedup log2(K +1)

cation to estimating effective mutation rate from genomic
data is shown in Sect. 6, showing measured speedups in a
real use of MCMC. Sect. 7 concludes with a brief discus-
sion of the results.

2 Optimal tree structure

Instead of using one specific tree shape in all cases (Brock-
well, 2006; Byrd et al., 2008) it is possible to construct a
tree, given an average acceptance probability, that maximises
the speedup. In this section, by maximising the expected
depth reached into the tree at each iteration, an algorithm for
the optimal tree shape is developed. The optimal acceptance
probability is then found in Sect. 4.

In appendix A this result is presented in a more general
setting. Here it is assumed that there is a fixed accept proba-
bility and the time per iteration is constant. Although in ac-
tuality seeing a number of rejects in a row will decrease the
probability of seeing an accept as the current state is likely to
have a higher likelihood than the proposals given this state,
it is a reasonable approximation to think of acceptance rate
as constant over a long chain.

If I denotes the node at which the accept/reject path leaves
the tree and di is the depth of node i (with the root node de-
fined as being at a depth of one), our objective is then to
maximize

ETK [dI ] (1)

over different treeshapes TK with K nodes, where K is the
number of available processors. This is efficiently achieved
using a greedy choice algorithm.

Let P denote the stochastic accept/reject path. Then

ETK [dI ] = E[ ∑
i∈TK

1(i ∈ P)]

= ∑
i∈TK

P(i ∈ P)

This suggests that K nodes should be chosen greedily
after their probability of being visited P(i ∈ P). Since the
probability of visiting a parent is always greater than visit-
ing one of its children, this guarantees a valid binary tree is
formed, which is grown from the root as in algorithm 2.

Algorithm 2 Optimal tree shape by greedy choice
Create priority queue Q with priorities given by equation (13);
Push root into Q;
for i from 1 to K do

Pop v from Q;
Add v to TK ;
Push children of v onto Q;

end for
return TK

Given this tree shape, algorithm 1 must be extended to
allow for speculative computation with an arbitrary proces-
sor tree shape. This is done for each iteration using a mas-
ter/slave architecture in algorithm 2.

Algorithm 3 Parallel MCMC using an arbitrary tree shape
function GENERATEPROPOSALS(node i, θi)

if right child exists then . reject node
GENERATEPROPOSALS(right child node, θi);

end if
simulate iid θ ′i ∼ q(θi, ·);
if left child exists then . accept node

GENERATEPROPOSALS(left child node, θ ′i );
end if

end function

GENERATEPROPOSALS(root node, θ0);
for i from 1 to K do

send state θ ′i to processor i;
end for
calculate log-likelihood of received state; . in parallel
for i from 1 to K do

receive log-likelihood from processor i;
end for
loop

calculate Hastings ratio αi with θi and θ ′i ;
with probability αi accept update; . add θi or θ ′i to chain
if accepted and a left child exists then

i← ile f tchild ;
else if right child exists then

i← irightchild ;
else

exit loop;
end if

end loop

Child nodes could also be spawned off recursively, al-
lowing distribution of proposals. However this leads to longer
communication times, potentially reducing the maximum speedup
achievable.

3 Computation and communication times

There are four computation times (all in CPU seconds) of
interest to the problem:

– tp is the time taken to generate a proposal θ ′ ∼ q(θ , ·)
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Fig. 2 Expected tree depth as a function of accept probability, for
various different numbers of processors in the tree. It is maximal for
the ladder trees chosen for low or high acceptance probabilities, and
reaches a minimum bounded by O(log2(K + 1)) at an accept rate of
0.5

– te is the time taken to evaluate the log-likelihood log(L(θ ′;y))
of the proposal state θ ′ in the distribution π given data
y.

– tc is the time taken to communicate between separate
processors - the time between calling MPI::Send and
MPI::Recv unblocking.

– td is the time taken to calculate the Hastings ratio, and
decide whether the update is accepted or not.

similar to those identified by Witte et al. (1991).
There will also be some fixed time to start the program,

but this will be short compared to overall program run-time.
A comparison between the parallel algorithm and the serial
algorithm including initialisation time will be made in Sect.
5.

The proposal time tp may in many cases be extremely
short, for example symmetric random walks (which are com-
monly chosen for MCMC as they simplify the Hastings ra-
tio) will have:

tp� tc (2)

A random walk with Gaussian dispersion is considered as
the proposal distribution in the example used in Sect. 6. This
does obey equation 2.

More complex proposals such as rearranging tree struc-
tures can have longer tp so that equation 2 no longer holds. In
these cases the computation of proposals may be distributed
among the parallel processors which may yield a greater
speedup by reducing the sum of all the proposal times tp
at each iteration, though at an expense of increasing tc.

For long likelihood computation times te� tc, tp, td such
that the overheads due to parallelisation can be neglected,
the maximum speedup of E can be achieved. For shorter
evaluation times the speedup will not be as great, and when
te ·E ≈ tc the parallel algorithm will start being less effective
than the serial algorithm.

3.1 Communication time with MPI

The LogP model of parallel computation of Culler et al.
(1993) introduces four parameters that characterise the com-
munication times in parallel algorithms. In simple algorithms
involving only point to point communication using MPI,
communication time for a single send and receive tc in µs
can be described by a simple formula involving three pa-
rameters (Xu and Hwang, 1996; Girona et al., 2000):

tc = L+
m
r∞

(3)

Where L is the latency (or startup time) in µs, m is the mes-
sage size in bytes and r∞ is the asymptotic bandwidth for
large messages in Mbytes per second. Therefore, due to the
latency term, even small amounts of message passing will
stop the maximum speedup from ever being reached.

Point to point communication latency and bandwidth are
both expected to be O (1) (Xu and Hwang, 1996), though
running Intel R© MPI Benchmarks 3.2.3 on the system shows
weak dependence on number of nodes K. The results of the
run for up to 8 processes for a fixed message size are given
in table 1.

Table 1 MPI point to point communication times in µs for a 16 byte
message on system 1 (see Sect. 5 for details on the system)

Nodes MPI::Send MPI::Bcast

Single send Complete send

2 0.47 0.47 0.37
4 0.65 1.95 0.85
8 0.79 5.53 1.44

Rather than using point-to-point communication it is also
possible to use MPI::Bcast, which sends a message to all
nodes. Broadcast latency is O (logK), and bandwidth is O

(
1

logK

)
(Xu and Hwang, 1996), though the constants of proportion-
ality are slightly larger than for point-to-point send/recv. This
also necessitates sending all the proposals to all processors,
which gives a larger message size. Despite this, MPI::Bcast
is very efficient compared to sequential point-to-point send
and receives, and the benchmarks in table 1 suggest that for
small message sizes m, as used in Sect. 5, MPI::Bcast should
be used instead of MPI::Send and MPI::Recv for any num-
ber of cores.

Benchmarking td and tp for a random proposal with Gaus-
sian dispersion gave the empirically determined times of
around 1µs each on system 1 (see Sect. 5 for details on the
system).

3.2 Threshold for speedup

The execution times of the serial and parallel algorithms can
be expressed in terms of the four times identified. The pro-
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Fig. 3 Theoretical speedup (equation 6) against evaluation time te for
K = 2 at the optimal acceptance probability. Note the curve asymptotes
towards the expected depth for large evaluation times. Speedup greater
than 1 is achieved when te = 6µs

cessing time in the serial case to make E updates is therefore

tS = E · (tp + te + td) (4)

Whereas in the parallel case, following algorithm 2, the pro-
cessing time to make the same number of updates requires
just one iteration, which takes a time

tP = K · tp +(K−1) · tc + te +(K−1) · tc +E · tp (5)

Proposals must be made for all processors K, then sent to
all slave processors. Evaluation of log-likelihoods is done in
parallel, so as soon as the master has finished its computa-
tion after te the log-likelihoods are then received from all the
processors slave taking a time K · tc. Finally, an average of E
decisions must be made to traverse the tree.

The speedup, defined as the ratio of the processing time
in serial to the processing time in parallel

S =
tS
tP

can then be written as the ratio of equations 4 and 5:

S =
E · (tp + te + td)

(K−1) · (tp +2tc)+ tp + te +E · td
(6)

In the limit te� tc, tp, td then S→ E as expected. When S >

1 then a speedup can be achieved over the serial algorithm.
Using the times obtained in Sect. 3.1, the speedup versus

te for two cores with an acceptance probability of 0.2 is plot-
ted in figure 3. Note that speedup is achieved starting from
very short evaluation times of the order of µs.
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a number of cores ranging from 1 to 64. While the curve has a shal-
low maximum for small number of cores, it becomes more pointed for
larger number of cores and hence picking the optimal acceptance prob-
ability becomes more important

4 Effect of sampling efficiency

Under certain conditions, it is possible to calculate the opti-
mum acceptance probability given the number of processors
K, and from this use algorithm 2 to calculate the optimum
tree shape.

Roberts, Gelman, et al. (1997) consider an n-dimensional
distribution of n iid. components and normal distributed ran-
dom walk proposals. Under some regularity conditions1 on
the 1-dimensional density, it is shown that in the limit of
n→ ∞ the effective sample size as a function of the accep-
tance probability p is proportional to

p ·Φ−1
( p

2

)2
(7)

where Φ−1 is the inverse of the cummulative density func-
tion for a standard normal.

Combining this result with the result of Sect. 2 the ef-
fective sample size per unit time can be mapped (up to a
constant) as a function of the accept probability (see fig. 4)
and determine the acceptance probabilities for which max-
imum sampling efficiency is achieved for any number of
cores. It turns out that these maxima are all obtained when
the tree is shaped as the simple ladder tree shape as in Byrd
et al. (2008). This will be shown numerically for a number
of cores K ≤ 100.

For a fixed number of cores K and a given p an easy
criterion for determining if the ladder shape is optimal is
checking if the RR. . . R-node (K− 1 R’s, at a depth of K),
will be chosen before the A-node (at a depth of 2), that is if:

(1− p)k−1 ≥ p (8)

1 TODO
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Let peq be the point where the optimal tree structure
switches from the ladder to some other shape, that is (1−
peq)

k−1 = peq. The idea is to give a lower bound for the
efficiency for p≤ peq satisfying (8) and an upper bound for
p≥ peq. Then proceed by observing that the lower bound for
the ladder is higher than the upper bound for non-ladders2.

Using the results in previous section the expected depth
of the optimal tree can be numerically determined for a given
probability p and a given number of cores k, Dp,k, for all p in
the interval [0;1] in steps of 10−4 and all k ∈ {1,2, . . . ,100}.
The lower bound for the maximum efficiency for p ≤ peq
consists of simply taking the maximum of

p ·Φ−1
( p

2

)2
Dp,k (9)

for the p ∈ {p = 0.0001z | z ∈ Z, p ≤ peq}. This yields a
lower bound as the maximum, and might be attained in the
interior of an interval.

Consider now intervals of the form Iz = [0.0001 ·z;0.0001·
(z+ 1)] containing p ≥ peq. Knowing that Dp,k is decreas-
ing on [0;0.5] and increasing on [0.5;1] it can be seen that
argmaxp∈Iz Dp,k is in an endpoint of Iz. Similarly the maxi-
mum of p ·Φ−1

( p
2

)2, attained is an endpoint except for the
interval3 [0.2338;0.2339]. For each interval the upper bound
of the efficiency is the product of each of these maxima. Fi-
nally maximum is taken over the intervals. The result of this
analysis is shown in appendix B.

The probabilities thus derived can be used to tune a par-
allel MCMC algorithm. TODO: emphasise and expand on
this point

4.1 Counter example

The previous result depends on the efficiency function. It
is not so that the ladder shape is the optimal shape in all
generality. For example, if the target distribution is a one
dimensional normal other tree shapes should be utilized to
achieve the optimal speedup. The efficiency curve can be
estimated with the inverse integrated autocorrelation times
(inverse IACT) with different proposal variances:

[1+2(ρ1 +ρ2 +ρ3 . . .)]
−1 (10)

Using a straightforward linear search the optimal accept
probabilities and the corresponding treeshapes can be found.
These are depicted in figure 7.

2 The wording might be a bit misleading, as it is only an upper bound
for non-ladder efficiencies over probabilities where the ladder shape is
not the optimal

3 The maximum of equation 7 is found to be 0.3314332 for p =
0.2338102
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5 Simulations

The simulation run is of 4000 updates while sampling from
a five-dimensional uncorrelated Gaussian, which is close to
the infinite dimensional distribution considered by Roberts,
Gelman, et al. (1997). Proposals are normally distributed
with a variance chosen (empirically) to give the optimal ac-
cept probability for the given number of cores. The chain
converges to the target distribution, as measured by eye, af-
ter only around 10 iterations so the results measured are ap-
plicable to the speedup of the algorithm after burn-in.

The simulations were run on the following systems:

– System 1 - 2.8GHz Xeon/Harpertown (8 cores per node)
SGI ICE 8200 MPI Cluster, Linux 2.6.16.60

– System 2 - 2.67GHz Xeon/Westmere EX (8 cores per
node) SGI UV 100 Shared memory system, Linux 2.6.32.54

Code was written in C++, using MPI for inter-process com-
munication. Between 1 and 64 MPI processes were tested
on system 1. 8 cores were available at each node, thus 2
nodes were used for 16 processes, 4 nodes for 32 processes
and so on. This introduces extra communication time tc for
each extra node required, as it necessitates more costly inter-
processor communication across the buses on the mother-
board.

The run-time of 10 such simulations is averaged at each
point. te is artificially made longer by generating large amounts
of random numbers for each log-likelihood evaluation, al-
lowing measurements over a range of values of te. The time
recorded was between execution starting and the chain be-
ing generated, therefore including the extra time to initialise
the MPI environment and calculate the optimal tree shape in
the parallel case.

Table 2 shows the results for the speedup on both of the
systems. The speedups of 1.80 in the two-core case, and
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merical approximation for the efficiency (equation 10). The shape is
the same as figure 4

3.13 in the four-core case are slightly higher than the 1.54
and 2.22 achieved by Byrd et al. (2008). Efficient communi-
cation between large number of cores is now possible, and
speedups are still increasing up to at least 64 cores.

Cores System 1 System 2

2 1.79 1.80
4 2.97 3.13
8 5.17 5.28

16 8.67 9.37
32 14.4 –
64 25.3 –

Table 2 Measured speedups on systems 1 and 2

As seen in table 2 system two performed better than sys-
tem one, particularly for larger numbers of processors. This
is because the shared memory allows much faster communi-
cation between processes, and there is therefore no penalty
for communication between multiple nodes. System two re-
alises speedups 99% of the maximum achievable with the al-
gorithm using 16 cores, whereas system one achieves 92%
of the maximum. The shared memory scenario of system
two is most similar to consumer multi-core systems, so those
running the algorithm on standard hardware can expect to
see similar speedups.

Effective speedup is defined as

Seff =
tS
tP
· efficiencyP

efficiencyS
(11)

where efficiencyP is the sampling efficiency for the parallel
case given the acceptance probability used, and efficiencyS
is the same for the serial case. It represents speedup of inde-
pendent sampling rate. This is plotted for system 2 in figure
8, and as predicted in Sect. 4 is always increasing with num-
ber of cores, and our implementation successfully realises
this.
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Figure 9 shows a plot of effective sample rate against ac-
ceptance probability for different numbers of cores. Though
this is for a five-dimensional Gaussian, it should be com-
pared with the theoretical analysis of an infinite dimensional
Gaussian presented in figure 4. The shape is very similar,
and shows the important result that for increasing number
of cores, acceptance probability should be lowered to max-
imise sampling rate.

To test the analysis of Sect. 3 and probe the efficacy of
the algorithm in more extreme limits, figure 10 was pro-
duced. This shows speedup S plotted against log-likelihood
evaluation time te for different numbers of cores. For two
cores, the shape of the curve matches that of figure 3 which
shows the theoretical analysis is qualitatively correct. Quan-
titatively there is a slight deviation, as the x-axis appears
slightly stretched. That is, it actually takes longer evalua-
tion times than predicted to achieve a given speedup. This is
likely due to some extra time in initialising the parallel algo-
rithm, and extra overheads in communication time that are
not seen in a benchmarking setup. Note that the algorithm
has still performed very well, with the log-likelihood eval-
uations times required for a large speedup to be seen very
small, on the order of hundreds of µs.

Distribution of the proposals between processors was
also implemented, and simulated on system 1 with the same
parameters as in fig 8. It performed worse than the case
where one processor makes all proposals then sends them
out to have their log-likelihoods computed. In the 32-processor
case it was 75% slower, and in the 4-processor case 10%
slower. This is due an extra overhead in total communication
time per iteration of K ·(2L), much greater than the decrease
in the extremely short proposal time tp

E .

6 Application from population genetics

In population genetics its easy to simulate genealogies histo-
ries using the continuous time approximation in the Wright-
Fisher (WF) model (Wright, 1931; Fisher, 1930). The infinite-
site assumption makes a convenient constraint on the ge-
nealogical histories reducing the possible ancestral states
needed to be considered (Kimura, 1969).

The effective mutation rate θ is an important parame-
ter that quantifies genetic diversity in the WF model. For
a given evolutionary relationship connecting the sequences
it is relatively straight forward to calculate the likelihood
of the effective mutation rate θ using the Ethier-Griffiths-
Tavaré (EGT) recursive equation (Ethier and Griffiths, 1987;
Griffiths and Simon, 1994).

πn(n) =
n−1

n−1+θ
∑

n j>1

n j−1
n−1

πn−1(n− e j)

+
θ

n−1+θ
∑

singletons

ni +1−δi j

n
πn(n− e j + ei)

The exact approach using the recursive equation is not com-
putational viable for large datasets since the number of events
grows quite rapidly. The other naive approach is to estimate
the posterior distribution by sampling random genealogical
histories.

π(θ |y)≈∑
G

π (θ |y,G)

Since the number of possible histories grows quickly with
number of sequences and sites, this approach is not viable
for real datasets. One approach is by introducing an I(G)

importance distribution for the histories by simulating draws
that make significant contributions to the posterior probabil-
ity estimate using I(G).

π̂(θ |y) = ∑
G

π (G|y) π (G|θ)
I(G)

By choosing histories that contribute significantly to the
posterior distribution we can reduce the variance the esti-
mate for the same number of iterations. This special use case
of importance sampling was pioneered by Griffiths and Si-
mon (1994) and there has been some research into the choice
of the importance sampling distribution and for our purposes
we use the proposal distribution from Hobolth et al. (2008).

6.1 GIMH (IS-MCMC)

A Markov chain was constructed to estimate the posterior
probability of θ and in each step we use the estimate of
π(θ |y). This special form of MCMC framework with a em-
bedded Monte Carlo estimate is called grouped indepen-
dence Metropolis Hastings sampler (GIMH) by Beaumont
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(2003). If the estimate of the posterior distribution of θ is
kept from the last iteration in the MCMC sampler (see algo-
rithm 6.1) it guarantees that the correct posterior distribution
is reached in the limit (Beaumont, 2003).

Algorithm 4 MCMC with importance sampling
for i from 1 to N do

simulate θ ′ ∼ q(θi, ·);
Generate unbiased estimate π̃(θ ′) of π(θ ′) with IS;

Set α ←min
{

1,
π̂(θ ′|y)
π̂(θi|y)

}
;

with probability α set θi+1 = θ ′ and π̂(θi+1|y) = π̂(θ ′|y);
otherwise set θi+1 = θi and π̂(θi+1|y) = π̂(θi|y);

end for

The acceptance ratio over the whole chain is expected
to be lower when using estimated posterior probabilities in-
stead of the exact probabilities. Intuitively this is because
if the posterior probability is overestimated for a particular
value of the parameter and the Markov chain gets “stuck” in
that state.

Proposition 1 in the appendix shows that this is more
than an intuition and the usage of the estimated likelihood
instead of the exact likelihood truly lowers the acceptance
ratio. For the efficiency curve in the high dimensional case,
the optimal tree shape was a ladder, this lowering of the ac-
ceptance ratio in the GIMH framework shifts the optimal
tree shape even further towards a ladder.

6.2 Simulations

We got a working C++ implementation of the importance
sampling scheme from Hobolth et al. (2008). To our surprise
we didn’t find any find suitable implementation of an impor-
tance sampler of genealogical histories in a high-performance
language such as C and C++.

A dataset of segregating sites of ten samples and effec-
tive mutation rate of one was simulated using the program
ms developed by Hudson (2002). Estimation was done using
the parallel MCMC algorithm with computer system 1 from
section 5.

Initial state was 1 for θ and Gaussian distribution on the
log scale was used for a jumping distribution negating the
need for the MH-proposal correction. The proposal variance
was hand tuned until the acceptance ratio reached value near
the optimal value for the one dimensional Gaussian case
with reasonable high number of IS samples 50. The unin-
formative improper prior on the positive real half-line was
used for computational convenience.

As described in Sect. 6.1, relationship between lower
acceptance ratio and worse estimates of the likelihood is
demonstrated in figure 11. The estimated posterior density
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Fig. 11 Importance samples versus acceptance ratio, with higher num-
ber of samples the acceptance ratio converges to the acceptance ratio
using the exact posterior probability.

for the effective mutation parameter from the MCMC itera-
tions has the peak in θ = 1 validating the implementation of
the IS algorithm figure 12.

The main point here is the speedup gained by using the
parallelization algorithm. Table 3 shows a significant speedup
for a practical example from population genetics although
the example is very simple further extension using the par-
allelization are trivially implemented. This demonstrates the
practicality of this algorithm, gaining speedup without great
modification to the typical MCMC estimation scenario.

Table 3 Running times for the parallelized GIMH algorithm for esti-
mating the effective mutation rate using multiple cores.

Nr of cores 1 2 4 8

Time (s) 115.11 64.72 42.65 32.64

7 Concluding remarks

An algorithm has been developed which parallelises MCMC
using speculative computation in the most efficient way pos-
sible. The algorithm is simple to implement and can provide
speedups to any MCMC process with a likelihood evaluation
time longer than 100µs. Speedups of 3.13 were achieved on
a four core shared memory system, and a speedup of 25.3
times was achieved on 64 core cluster. A real-life applica-
tion to estimating mutation rate was also considered, where
a speedup of 2.70 was achieved using four cores. These are
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Fig. 12 The trace plot of the MCMC iterations on the left and the esti-
mated posterior distribution on the right for the mutation rate parameter
θ .

easily accessible speedups with modern hardware, and may
be of interest to many users of MCMC.

The algorithm has the feature that lowering the accep-
tance rate increases its sampling efficiency. This is very use-
ful in applications where it is difficult to create proposals
that are ever accepted, for example rearranging phylogenetic
trees. In these cases it is possible to achieve speedups which
approach being linear with number of processors for very
little extra effort.

The rule of thumb that should be taken away is that for
most applications the best thing to do is use a tree consisting
of entirely reject nodes, as proposed by Byrd et al. (2008).
The acceptance probability should be lowered the more pro-
cessors used, in line with Sect. 4 if possible.

Further work in this area may include investigation into
the most effective acceptance probability and the tree shape
this gives in the case of pseudomarginal MCMC, consid-
ered briefly in Sect. 6. Here, the importance sample size af-
fects the efficiency of the MCMC sampling, so there are two
parameters to optimise over to get the optimal paralleliza-
tion. Including this in the theoretical framework would al-
low efficient application of the algorithm to this newer area
of MCMC, and expand the potential user base.

The assumption that acceptance probability is constant
and uncorrelated to the previous state could be relaxed. It is
clearly not entirely correct, as when in a low likelihood state
it will be higher than the average value, and when in a high
likelihood state is will be lower than the average value. A

potential idea for this is use of the beta distribution to esti-
mate the acceptance probability given the state, and redraw
the tree periodically.
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A Optimal tree shape in generality

The greedy choice algorithm, algorithm 2, can be extended to the case
where sub-processes are spawned recursively and to include changing
accept probabilities. If the implementation allows a new iteration to be
started as soon as the accept/reject path leaves the tree, the time per
iteration will depend on I.

The objective is then to maximize

E
[

dI

tI

]
(12)

di being the depth of node i, where the root has depth 1 and ti is the
time to finish the algorithm at node i.

As in Sect. 2, let P denote the stochastic accept/reject path, I the
end node of this path and by (·)′ the parent node or corresponding value
in parent. Finally TK is a subtree of the full binary tree on K nodes.
Then

E
[

dI

tI

]
= E

[
∑

i∈TK

1(i ∈ P)(
di

ti
− d′i

t ′i
)

]
= ∑

i∈TK

P(i ∈ P)(
di

ti
− d′i

t ′i
)

This suggests that in order to maximize (12) the K nodes in TK
should be chosen greedily using the selection function

P(i ∈ P)(
di

ti
− d′i

t ′i
) (13)

That is, choose the K nodes with the highest value of (13). The prop-
erty that parents will always be chosen before children, ensured the
correctness of this algorithm in the simpler case, is not generally sat-
isfied here. Proceed by assuming this is still satisfied, then algorithm 2
can still be used, just replacing the priorities with equation 13.

If the condition

P(i ∈ P)(
di

ti
− d′i

t ′i
)< P(i′ ∈ P)(

d′i
t ′i
− d′′i

t ′′i
) (14)

is satisfied, then algorithm 2 will give the tree on K processors that
maximizes expected depth (12).

In the parallel computation model derived from discussed in Sect.
3, the computation times satisfy

ti < te

for all i ∈ TK . Also it is the case that

di

ti
− d′i

t ′i
<

d′′i +2
t ′′i
− d′′i +1

t ′′i
di

ti
− d′i

t ′i
<

d′′i +2
t ′′i
− d′′i +1

t ′′i

(15)

Note the right-hand sides are equal in the limit of

tc
te
→ 0

As P(i ∈ P) < P(i′ ∈ P), the condition of equation 14 will roughly
always be satisfied when the ratio between communication time and
evaluation time is small.

B Numerical proof of ladder tree shape being optimal

Table 4

k p ladder tree k p ladder tree k p ladder tree
2 0.1999 0.59 0.34 35 0.0443 3.22 2.98 68 0.0267 4.13 3.84
3 0.1758 0.81 0.58 36 0.0434 3.25 3.01 69 0.0264 4.15 3.86
4 0.1577 0.99 0.78 37 0.0426 3.29 3.05 70 0.0261 4.17 3.88
5 0.1434 1.15 0.95 38 0.0417 3.33 3.08 71 0.0258 4.19 3.90
6 0.1318 1.30 1.10 39 0.0409 3.36 3.11 72 0.0255 4.21 3.92
7 0.1221 1.43 1.23 40 0.0402 3.39 3.15 73 0.0253 4.23 3.93
8 0.1140 1.55 1.36 41 0.0394 3.43 3.18 74 0.0250 4.25 3.95
9 0.1069 1.66 1.47 42 0.0387 3.46 3.21 75 0.0247 4.27 3.97
10 0.1008 1.76 1.57 43 0.0381 3.49 3.24 76 0.0245 4.29 3.99
11 0.0955 1.86 1.66 44 0.0374 3.52 3.27 77 0.0242 4.31 4.00
12 0.0907 1.95 1.75 45 0.0368 3.55 3.30 78 0.0240 4.33 4.02
13 0.0864 2.03 1.83 46 0.0362 3.58 3.32 79 0.0237 4.35 4.04
14 0.0826 2.11 1.91 47 0.0356 3.61 3.35 80 0.0235 4.37 4.06
15 0.0791 2.19 1.99 48 0.0350 3.64 3.38 81 0.0232 4.38 4.07
16 0.0759 2.26 2.06 49 0.0345 3.67 3.41 82 0.0230 4.40 4.09
17 0.0730 2.33 2.12 50 0.0339 3.70 3.43 83 0.0228 4.42 4.11
18 0.0704 2.39 2.19 51 0.0334 3.72 3.46 84 0.0226 4.44 4.12
19 0.0679 2.46 2.25 52 0.0329 3.75 3.48 85 0.0224 4.45 4.14
20 0.0656 2.52 2.31 53 0.0325 3.78 3.51 86 0.0221 4.47 4.16
21 0.0635 2.58 2.36 54 0.0320 3.80 3.53 87 0.0219 4.49 4.17
22 0.0616 2.63 2.42 55 0.0315 3.83 3.56 88 0.0217 4.51 4.19
23 0.0597 2.69 2.47 56 0.0311 3.86 3.58 89 0.0215 4.52 4.20
24 0.0580 2.74 2.52 57 0.0307 3.88 3.60 90 0.0213 4.54 4.22
25 0.0564 2.79 2.57 58 0.0303 3.90 3.63 91 0.0212 4.55 4.23
26 0.0549 2.84 2.61 59 0.0299 3.93 3.65 92 0.0210 4.57 4.25
27 0.0534 2.88 2.66 60 0.0295 3.95 3.67 93 0.0208 4.59 4.26
28 0.0521 2.93 2.70 61 0.0291 3.98 3.69 94 0.0206 4.60 4.28
29 0.0508 2.97 2.75 62 0.0287 4.00 3.71 95 0.0204 4.62 4.29
30 0.0496 3.02 2.79 63 0.0284 4.02 3.74 96 0.0203 4.63 4.31
31 0.0484 3.06 2.83 64 0.0280 4.04 3.76 97 0.0201 4.65 4.32
32 0.0473 3.10 2.87 65 0.0277 4.07 3.78 98 0.0199 4.66 4.34
33 0.0463 3.14 2.90 66 0.0274 4.09 3.80 99 0.0198 4.68 4.35
34 0.0453 3.18 2.94 67 0.0270 4.11 3.82 100 0.0196 4.69 4.36

Table 4 For each number of cores K ≤ 100 the optimal ladder proba-
bility, the optimal efficiency in the ladder (equation 9) and the optimal
efficiency in a non-ladder (only under probabilities where the ladder
doesn’t guarantee greater expected depth) are given

C GIMH lowering proof
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