Firth regression in python
Contents
Marco Galardini and I have recently reimplemented the bacterial GWAS software SEER in python. As part of this I rewrote my C++ code for Firth regression in python. Firth regression gives better estimates when data in logistic regression is separable or close to separable (when a chi-squared contingency table has small entries).
I found that although there is an R implementation logistf I couldn’t find an equivalent in another language, or python’s statsmodels. Here is a gist with my python functions and a skeleton of how to use them and calculate p-values, in case anyone would like to use this in future without having to write the optimiser themselves.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
'''Python implementation of Firth regression by John Lees | |
See https://www.ncbi.nlm.nih.gov/pubmed/12758140''' | |
def firth_likelihood(beta, logit): | |
return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) | |
# Do firth regression | |
# Note information = -hessian, for some reason available but not implemented in statsmodels | |
def fit_firth(y, X, start_vec=None, step_limit=1000, convergence_limit=0.0001): | |
logit_model = smf.Logit(y, X) | |
if start_vec is None: | |
start_vec = np.zeros(X.shape[1]) | |
beta_iterations = [] | |
beta_iterations.append(start_vec) | |
for i in range(0, step_limit): | |
pi = logit_model.predict(beta_iterations[i]) | |
W = np.diagflat(np.multiply(pi, 1-pi)) | |
var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) | |
# build hat matrix | |
rootW = np.sqrt(W) | |
H = np.dot(np.transpose(X), np.transpose(rootW)) | |
H = np.matmul(var_covar_mat, H) | |
H = np.matmul(np.dot(rootW, X), H) | |
# penalised score | |
U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) | |
new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) | |
# step halving | |
j = 0 | |
while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): | |
new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) | |
j = j + 1 | |
if (j > step_limit): | |
sys.stderr.write('Firth regression failed\n') | |
return None | |
beta_iterations.append(new_beta) | |
if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): | |
break | |
return_fit = None | |
if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: | |
sys.stderr.write('Firth regression failed\n') | |
else: | |
# Calculate stats | |
fitll = -firth_likelihood(beta_iterations[-1], logit_model) | |
intercept = beta_iterations[-1][0] | |
beta = beta_iterations[-1][1:].tolist() | |
bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) | |
return_fit = intercept, beta, bse, fitll | |
return return_fit | |
if __name__ == "__main__": | |
import sys | |
import warnings | |
import math | |
import statsmodels | |
import numpy as np | |
from scipy import stats | |
import statsmodels.api as smf | |
# create X and y here. Make sure X has an intercept term (column of ones) | |
# ... | |
# How to call and calculate p-values | |
(intercept, beta, bse, fitll) = fit_firth(y, X) | |
beta = [intercept] + beta | |
# Wald test | |
waldp = [] | |
for beta_val, bse_val in zip(beta, bse): | |
waldp.append(2 * (1 - stats.norm.cdf(abs(beta_val/bse_val)))) | |
# LRT | |
lrtp = [] | |
for beta_idx, (beta_val, bse_val) in enumerate(zip(beta, bse)): | |
null_X = np.delete(X, beta_idx, axis=1) | |
(null_intercept, null_beta, null_bse, null_fitll) = fit_firth(y, null_X) | |
lrstat = -2*(null_fitll - fitll) | |
lrt_pvalue = 1 | |
if lrstat > 0: # non-convergence | |
lrt_pvalue = stats.chi2.sf(lrstat, 1) | |
lrtp.append(lrt_pvalue) |